Visualizing your Data

Joseph Insley
Lead, Visualization & Data Analytics
Argonne Leadership Computing Facility

Silvio Rizzi
Assistant Computer Scientist
Argonne Leadership Computing Facility

Argonne 🔷

Here's the plan...

- Examples of visualizations
- Visualization resources
- Visualization tools and formats
- Data representations
- Visualization for debugging
- In-Situ Visualization and Analysis

Climate

Data courtesy of: Mark Taylor, Sandia National Laboratory; Rob Jacob, Argonne National Laboratory; Warren Washington, National Center for Atmospheric Research

Data courtesy of: Anurag Gupta and Umesh Paliath, General Electric Global Research

Materials Science / Molecular

Data courtesy of:
Subramanian
Sankaranarayanan,
Argonne National
Laboratory

Data courtesy of: Jeff Greeley, Nichols Romero, Argonne National Laboratory

Data courtesy of: Paul Kent, Oak Ridge National Laboratory, Anouar Benali, Argonne National Laboratory

Cosmology

Data courtesy of: Salman Habib, Katrin Heitmann, and the HACC team, Argonne National Laboratory

Cooley: Analytics/Visualization cluster

Peak 223 TF

126 nodes; each node has

- Two Intel Xeon E5-2620 Haswell 2.4 GHz 6-core processors
- NVIDIA Telsa K80 graphics processing unit (24GB)
- 384 GB of RAM

Aggregate RAM of 47 TB

Aggregate GPU memory of ~3TB

Cray CS System

216 port FDR IB switch with uplinks to our QDR infrastructure

Mounts the same file systems as Mira, Cetus, Theta

All Sorts of Tools

Visualization Applications

- -Vislt *
- -ParaView*
- -EnSight
- Domain Specific
- -VMD, PyMol, Ovito

APIs

- -VTK: visualization
- -ITK: segmentation & registration

GPU performance

-vI3: shader-based volume and particle rendering

Analysis Environments

- -Matlab
- -Parallel R

Utilities

- -GnuPlot
- –ImageMagick
 - Available on Cooley
 - * Available on Theta

ParaView & Vislt vs. vtk

ParaView & VisIt

- -General purpose visualization applications
- -GUI-based
- Client / Server model to support remote visualization
- -Scriptable / Extendable
- -Built on top of vtk (largely)
- -In situ capabilities

vtk

- -Programming environment / API
- -Additional capabilities, finer control
- –Smaller memory footprint
- -Requires more expertise (build custom applications)

Data File Formats (ParaView & Vislt)

VTK	PLOT3D	Facet	Tetrad
Parallel (partitioned) VT	SpyPlot CTH	PNG	UNIC
VTK MultiBlock	HDF5 raw image data	SAF	VASP
(MultiGroup, Hierarchica	^{I,} DEM	LS-Dyna	ZeusMP
Hierarchical Box)	VRML	Nek5000	ANALYZE
Legacy VTK	PLY	OVERFLOW	BOV
Parallel (partitioned) legacy VTK	Polygonal Protein Data	paraDIS	GMV
EnSight files	Bank	PATRAN	Tecplot
EnSight Master Server	XMol Molecule	PFLOTRAN	Vis5D
Exodus	Stereo Lithography	Pixie	Xmdv
BYU	Gaussian Cube	PuReMD	XSF
XDMF	Raw (binary)	S3D	
PLOT2D	AVS	SAS	
FLOTZD	Meta Image		

Version 5.5.2 (Client and Server versions must match)

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.5.2 (Client and Server versions must match)

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.5.2 (Client and Server versions must match)

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.5.2 (Client and Server versions must match)

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- -Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.5.2 (Client and Server versions must match) After launching client locally

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.5.2 (Client and Server versions must match)
After launching client locally

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Data Representations: Volume Rendering

Data Representations: Glyphs

2D or 3D geometric object to represent point data

Location dictated by coordinate

- 3D location on mesh

2D position in table/graph

Attributes of graphical entity dictated by

attributes of data

color, size, orientation

Data Representations: Contours (Isosurfaces)

A Line (2D) or Surface (3D), representing a constant value Vislt & ParaView:

good at this

vtk:

- same, but again requires more effort

Data Representations: Cutting Planes

Slice a plane through the data

- Can apply additional visualization methods to resulting plane

VisIt & ParaView & vtk good at this

VMD has similar capabilities for some data formats

Molecular Dynamics Visualization

VMD:

- Lots of domain-specific representations
- Many different file formats
- Animation
- Scriptable

VisIt & ParaView:

 Limited support for these types of representations, but improving

VTK:

Anything's possible if you try hard enough

Visualization for Debugging

Visualization for Debugging

Visualization as Diagnostics: Color by Thread ID

Visualization as Diagnostics: Color by Thread ID

In Situ Visualization and Analysis

The Need of In Situ Analysis and Visualization

Research challenges for enabling scientific knowledge discovery at extreme-scale concurrency
Widening gap between FLOPs and I/O capacity

 will make full-resolution, I/O-intensive post hoc analysis prohibitively expensive, if not impossible.

Slides courtesy SENSEI in situ project:

www.sensei-insitu.org

Multiple in-situ infrastructures

Can We....

Enable use of any in situ framework?

Develop analysis routines that are portable between codes?

Make it easy to use?

OUR APPROACH

Data model – to pass data between Simulation & Analysis

API – for instrumenting simulation and analysis codes

Miniapp instrumentation with SENSEI

Instrumenting Applications

- Write Bridge and Data Adaptor code
 - Recommended to use SENSEI miniapp examples as starting point
- Three minor modifications in application code:
 - Call Bridge Init() method after initializing MPI and pass MPI communicator
 - 2. Call Bridge Execute() method after computing every timestep
 - 3. Call Bridge Finalize() method before MPI finalize
- Write an XML file for SENSEI generic analysis adaptor ...
 - All the currently supported analysis backends can be enabled using this method
- ... or write your own analysis adaptor

Using the configurable analysis adaptor

- Enable analysis in .xml file
- Run instrumented simulation

```
<sensei>
  <!-- Custom Analyses -->
  <analysis type="histogram" mesh="atoms" array="type" association="point"</pre>
    bins="10" enabled="0" />
  <analysis type="histogram" mesh="atoms" array="id" association="point"</pre>
    bins="10" enabled="1" />
  <!-- Available with ENABLE VTK IO -->
  <analysis type="PosthocIO" mode="paraview" output_dir="./vtkio" enabled="0">
    <mesh name="atoms">
        <point_arrays> type, id</point_arrays>
    </mesh>
 </analysis>
</sensei>
```

Catalyst example

- Load a representative dataset in ParaView
- Define your visualization pipeline
- Export
 Catalyst
 Python script

Catalyst example

- Configure XML file
- Run instrumented simulation
- Result: one .png image per simulation timestep


```
<sensei>
  <!-- Available with ENABLE_CATALYST -->
  <analysis type="catalyst" pipeline="pythonscript"</pre>
    filename="gaussianptsbyid.py" enabled="1" />
</sensei>
```

LAMMPS instrumentation with SENSEI and OSPRay

LAMMPS Input File LAMMPS as a In transit. Two Viewer decoupled library concurrent jobs from renderer Bridge **OSPRay** Driver Viewer libIS-sim libIS-client liblammps

Callback function from LAMMPS (every timestep)

```
void LAMMPSCallback(void *ptr, bigint ntimestep,
                                                               XYZ atom coords
               int nlocal, int *id, double **x, double **f).
                                                               from LAMMPS
   Info *info = (Info *) ptr;
   // extents
   double boxxlo = *((double *) lammps extract global(info->lmp, "boxxlo"));
   double boxxhi = *((double *) lammps extract global(info->lmp, "boxxhi"));
   double boxylo = *((double *) lammps extract global(info->lmp, "boxylo"));
   double boxyhi = *((double *) lammps extract global(info->lmp, "boxyhi"));
   double boxzlo = *((double *) lammps_extract_global(info->lmp,"boxzlo"));
   double boxzhi = *((double *) lammps extract global(info->lmp, "boxzhi"));
                                                                           get atom types
                                                                           from LAMMPS
   // get pointer to atom types
          *type = (int *) lammps extract atom(info->lmp, "type");
   // update SENSEI bridge
   bridge::Set data(nlocal, id, type, x, boxxlo, boxylo, boxzlo, boxxhi, boxyhi, boxzhi);
   // visualize
                                                                             Update SENSEI
   bridge::Execute();-
                                     Visualize
                                                                             bridge
```

sci1952 : sci1952 > work > bash

ork1:bash* 2:bash- 3:bash will@sci1952

Additional Resources

- SENSEI source code and build instructions https://gitlab.kitware.com/sensei/sensei
- SENSEI SC17 Tutorial
 Slides and Virtual Machine
 https://data.kitware.com/#collection/5a007cb58d777f31ac64ddfd/folder/5a049b808d777f31ac64e77d
- SENSEI SC18 Tutorial
 SENSEI Cross-Platform View of In Situ Analytics
 Sunday, November 11th,1:30pm 5pm
 https://sc18.supercomputing.org/presentation/?id=tut142&sess=sess255

Resources for optional hands-on session

- ParaView installers
 Download version 5.5.2
 https://www.paraview.org/download/
- ALCF ParaView Red Blood Cell Tutorial <u>https://www.alcf.anl.gov/user-guides/vis-paraview-red-blood-cell-tutorial</u>
- ParaView on Cooley https://www.alcf.anl.gov/user-guides/paraview-cooley
- Data on Cooley
 /projects/SDL_Workshop/visualization/BLOODFLOW_TUTORIAL_DATA

